Artículos sobre ciencia y tecnología de Mauricio-José Schwarz publicados originalmente en El Correo y otros diarios del Grupo Vocento

septiembre 10, 2016

Anatomía de los terremotos

Determinación preliminar de epicentros de 358.214 terremotos, 1963 - 1998.
(Imagen DP de la NASA vía Wikimedia Commons) 
Los desastres naturales son capaces de desplegar fuerzas que empequeñecen la capacidad humana de generar potencia. Un terremoto de magnitud 7 en la antigua escala de Richter libera energía equivalente a 617.000 bombas como la que estalló en Hiroshima el 6 de agosto de 1945. El arma nuclear más poderosa que se ha creado, la Tsar Bomba de la Unión Soviética, era como 3.300 bombas de Hiroshima. El terremoto mencionado es 200 veces más poderoso.

Un terremoto es cualquier movimiento súbito de la corteza terrestre, generalmente causado por un deslizamiento en una falla geológica. Puede haber sacudidas debido a otros factores, como un deslizamiento de tierra o el hundimiento de una galería de una mina, pero no se suelen llamar terremotos.

La corteza de nuestro planeta no es de una pieza. Está formada por 12 placas, como un puzzle, que flotan sobre el manto terrestre de roca suave fundida y que se subdividen en docenas de placas menores. Al moverse, ejercen presión una contra otra en las fallas geológicas, y cuando esta presión cede y una de ellas se mueve súbitamente, se produce esta liberación de energía.

Así, los terremotos que ocasionalmente se producen en Italia, Grecia y el sur de España se deben a que la placa africana y la placa euroasiática están en contacto precisamente en esa zona, desde la mitad del Atlántico, cruzando el estrecho de Gibraltar, a lo largo del Mediterráneo hasta la península Arábiga, donde ambas placas se ven separadas por la árabe.

La energía se puede liberar muy cerca de la superficie terrestre o a una profundidad de cientos de kilómetros. El punto donde esto ocurre se llama el “foco” del terremoto, mientras que el “epicentro”, que quiere decir “sobre el centro” es el punto de la superficie terrestre que está encima de ese foco. Es decir, cuando las noticias nos dicen que el epicentro está en tal punto geográfico no sabemos a qué profundidad ha ocurrido la liberación de energía, lo que es importante porque los terremotos más destructivos suelen ocurrir a poca profundidad.

La superficie terrestre no es tan firme como parece, es elástica, como lo vemos en los pliegues que forman las grandes cordilleras, dobleces en la roca provocados por la presión de una placa contra otra. Así se han creado, por ejemplo, los Himalayas, a lo largo de 50 millones de años de choque entre la placa índica y la euroasiática. Esa elasticidad de la roca es la que transmite las ondas producidas en el foco de un terremoto y que se mueven como lo hace cualquier sonido o cualquier vibración que se transmite a lo largo de un sólido. Los terremotos producen tres tipos de ondas que los sismólogos pueden diferenciar claramente.

Primero, se producen las llamadas “ondas primarias”, de compresión o longitudinales, que se abrevian como “ondas P”. Estas son ondas de compresión y expansión, similares a las del sonido y son las primeras que registran las estaciones sismológicas. Estas ondas se pueden propagar por medios sólidos, líquidos o gaseosos. A continuación se producen las “ondas S”, secundarias, transversales o de cizalla, y que se transmiten de modo perpendicular. Estas ondas son como las que se producen cuando los niños extienden una cuerda de salto en el suelo y sacuden súbitamente un extremo, de modo que podemos ver la onda recorriendo la cuerda hasta el otro extremo. No se transmiten por medios líquidos.

Estos dos tipos de ondas se extienden en todas direcciones desde el foco del terremoto, es decir, por todo el cuerpo de la tierra. No ocurre así con las ondas superficiales que, precisamente, se transmiten sólo en las capas superiores de la tierra. Se trata de las ondas Rayleigh y Love, que son como las ondas que vemos cuando lanzamos un objeto en un cuerpo de agua tranquilo o las olas del mar. Son las que provocan los daños de los terremotos en construcciones y bienes... y en última instancia en vidas.

Solemos identificar los daños causados por los terremotos principalmente en cuanto a edificaciones que se vienen abajo al no estar construidas con especificaciones adecuadas para resistir un movimiento sísmico. En palabras de un ingeniero que analizó los efectos del terremoto de 1985 de la Ciudad de México “Los terremotos no matan gente... los edificios mal construidos matan gente”.

Esto es cierto sólo hasta un punto determinado. Los terremotos pueden ocasionar mortales deslizamientos de tierra y barro, o avalanchas, dañar tuberías eléctricas, de gas y drenajes que pueden ocasionar incendios y un fenómeno llamado “licuefacción de la tierra”, donde el movimiento hace que el suelo pierda estabilidad y se convierta en un fluido similar a las míticas arenas movedizas que puede tragarse edificaciones enteras.

Si el epicentro ocurre en el océano o cerca de la costa, puede además provocar una serie de olas de intensidad y altura desusadas, los tsunamis, cuyos efectos conocimos claramente en 2004 cuando una serie de tsunamis producto de un terremoto en el Océano Índico (uno de los más potentes terremotos jamás registrados) ocasionaron más de 230.000 muertes en 14 países alrededor del epicentro, con olas de hasta 10 metros de altura.

Los terremotos, siendo fenómenos indeseables y destructivos, permiten sin embargo a los geólogos aprender sobre el interior de nuestro planeta, del que sabemos tan poco. Analizando las distintas ondas sísmicas y midiendo su velocidad de propagación al registrarlas con sismógrafos situados en diferentes puntos del planeta, han podido saber más acerca de la composición de nuestro mundo, de las capas que lo componen, de su espesor y de otros factores. Las ondas sísmicas, como las del sonido, pueden además reflejarse contra obstáculos menos elásticos, interferirse, refractarse o difractarse, generando ondas más complejas que pueden incluso incrementar o disminuir la capacidad destructiva de un sismo y darle a los geólogos valiosa información.

Cada año ocurren en todo el mundo alrededor de 1.500 terremotos de magnitud de 5 grados o mayor. Entenderlos, prevenir sus daños y conocerlos no sólo es una labor científica importante... es la base que nos permite tener reglamentos de construcción y otras normativas basadas en el conocimiento que pueden salvar vidas.

Predecir los terremotos

Es imposible saber con certeza cuándo una falla o un volcán van a liberar energía provocando un terremoto. Sin embargo, hay sistemas de advertencia previa, alarmas que registran la aparición de un terremoto en su epicentro y que pueden advertir a la gente. Las ondas superficiales de un terremoto viajan a enre 1 y 6 kilómetros por segundo, dependiendo de la composición del terreno, temperatura y otras condiciones. Así, una ciudad ubicada a 300 kilómetros del epicentro puede ser advertida varios minutos antes de que “viene” un terremoto o un tsunami para que la población se ponga a salvo.

junio 11, 2016

Vavílov, pionero y mártir de la biotecnología

Nikolai Vavílov

El científico mártir por excelencia es Galileo Galilei, con sus pesados nueve años de prisión domiciliaria hasta su muerte en 1642. Su suerte, sin embargo, se puede considerar benévola si se le compara con la de uno de los pioneros de la genética vegetal, el ruso Nikolai Vavílov.

Vavílov fue el originador del concepto del “centro de origen” de los cultivos. Su hipótesis, posteriormente comprobada, era que se podía identificar la zona donde había comenzado la domesticación de cada uno de los cultivos que utilizan los seres humanos, que no se trataba de un fenómeno que había ocurrido al azar o en distintos puntos. Saber dónde comenzó la domesticación de una planta nos dice dónde encontrar a sus parientes silvestres, fuentes de hibridación que permitan mejorar las características de los cultivos.

Los científicos agrícolas llaman a estos centros, precisamente, “Centros de Vavílov” en memoria del científico. Actualmente se considera que en el mundo hay 12 de ellos.

Genetista y revolucionario

Nikolai Ivánovich Vavílov nació el 25 de noviembre de 1887, el mayor de cuatro de una familia de comerciantes. Ni él ni su otro hermano varón seguirían el negocio del padre. Sergei, el menor, se convertiría en un importante físico, mientras que Nikolai se vio atraído por la botánica y la agricultura, y se inscribió en el Instituto Agrícola de Moscú, del que se graduó en 1910.

Vavílov se propuso su “misión por la humanidad”: usar la genética para mejorar los cultivos y alimentar a todo el mundo con “superplantas” resistentes a heladas, sequías y plagas. Su tesis fue sobre la protección de las plantas contra las plagas y luego definió su programa para hacer realidad su sueño alimentario, presentado en su artículo “Genética y agronomía” de 1912.

En los años siguientes, Vavílov recorrió laboratorios de Gran Bretaña, Francia y Alemania para después establecerse como profesor e investigador en el Instituto Agrícola Saratov. Cuando muchos de sus colegas huían de la guerra y la revolución comunista, Vavílov se quedó y los conminó a quedarse para cumplir su tarea científica en un país con graves carencias alimenticias.

En 1920 alcanzó uno de sus máximos logros científicos, al enunciar la Ley de las Series Homólogas de Variación, que en resumen dice que si ordenamos en una tabla las variaciones que sabemos que existen en una especie, tales variaciones también aparecerán en cualquier otra especie genéticamente próxima. El potencial de mutación en genes similares entre dos especies es, entonces, el mismo.

Además de pertencer a los principales institutos de investigación agronómica y dirigir un importante instituto en Leningrado, además de presidir la Academia de Ciencias Agrícolas Lenin, Vavílov llegó a ser miembro extranjero de la Royal Society de Londres.

Durante toda su carrera dedicó tiempo a recorrer el mundo reuniendo muestras de los diversos cultivos: Persia, Asia Central, Estados Unidos, Oriente Medio, Afganistán, Norte de África, Etiopía, China, Centro y Suramérica y Europa, incluida España, que recorrió durante meses en 1927. Formó así el que sería en su momento el mayor banco de semillas o germoplasma (recurso genético viviente), ubicado en Leningrado (San Petersburgo) y alcanzó reconocimiento como uno de los genetistas más importantes de su tiempo.

Sin imaginar que de alguna forma estaba sellando su suerte, Vavílov apoyó a un joven agrónomo llamado Trofim Lysenko, que buscaba también mejorar los cultivos soviéticos, pero con otros métodos y, desgraciadamente, con otras bases teóricas. Lysenko defendía una evolución lamarckiana y llegó a teorizar que las ideas de Mendel y Darwin eran “burguesas” y contrarrevolucionarias, y por tanto no eran “ciencia verdadera”. A cambio, elaboró una hipótesis fantasiosa según la cual podía alimentar a toda la URSS fácilmente e incluso lograr milagros como convertir semillas de trigo en semillas de cebada. Entre sus afirmaciones estaba que no era necesario mejorar los cultivos soviéticos con semillas traídas de otros países como hacía Vavílov, ya que la semilla soviética era naturalmente superior. Demagogia agradable a oídos de los poderosos.

Lysenko era de origen campesino, de modo que ideológicamente resultaba más atractivo para el poder que el burgués Vavílov. A la amistad original seguiría la confrontación ideológica, donde Lysenko alcanzó el favor incondicional de Stalin, el férreo gobernante de la URSS. Poco a poco, con acusaciones delirantes y sin bases, pero con la anuencia de los tribunales, Lysenko fue echando de sus puestos académicos a todos los genetistas darwinianos, y consiguiendo que algunos fueran encarcelados o fusilados.

En 1940, tocó el turno a Nikolai Vavílov, detenido durante una de sus expediciones a Ucrania y sometido a juicio como instigador de una presunta contrarrevolución, saboteador de los trabajadores e incluso espía para Inglaterra. En julio de 1941, apenas un mes después de que la Alemania Nazi atacara a la URSS comenzando un enfrentamiento que duraría cuatro largos y penosos años, el científico fue condenado a muerte y a la confiscación de todos sus bienes. Un año después, la pena se conmutó por 20 años de trabajos forzados y Vavílov fue enviado al campo de trabajo de Saratov, donde, tratando de seguir su trabajo, daba conferencias de ciencia a otros presos y redactó una Historia de la agricultura mundial que permanece inédita. No resistió. La escasez provocada por la guerra y la brutalidad de su castigo lo llevaron rápidamente a morir de hambre, paradoja especialmente dolorosa para quien había soñado en alimentar a todos los hambrientos. Era el 26 de enero de 1943.

La figura de Vavílov, junto a la de otros genetistas, no fue rehabilitada sino hasta 1960, como parte del proceso de “desestalinización” que buscaba reparar el daño de la dictadura del brutal georgiano.

Hoy, reconocido como uno de los grandes de la ciencia agronómica, su banco de semillas, enriquecido hasta las 375.000 especies, se encuentra y estudia en el Instituto Vavílov de San Petersburgo. El cráter Vavílov en el lado oculto de la Luna lleva ese nombre por él y por su hermano Sergey. Su trabajo y sacrificio son reconocidos por todos los genetistas del mundo.

Los héroes del banco de semillas

Los científicos del Instituto Vavílov protegieron con sus vidas, literalmente, la colección del genetista en Leningrado. Se encerraron con las miles y miles de muestras de semillas, frutas, raíces y plantas que había reunidas allí y las guardaron, negándose a alimentarse de ellas durante los 28 meses que la ciudad estuvo sitiada por los nazis. Al terminar el sitio, nueve de ellos habían muerto de hambre sin tocar el tesoro genético. Su historia está contada en la novela Hambre, de la escritora Elise Blackwell.

abril 02, 2016

Margaret Hamilton y las mujeres del Apolo

Margaret Hamilton (Imagen DP vía Wikimedia Commons)
La fotografía muestra a una joven con un aspecto inconfundible de fines de los años 60 sonriendo de pie junto a una torre de hojas de papel que mide lo mismo que ella.

Sin el pie de foto, se podría interpretar de muchas maneras sin dar con la explicación: la imagen del 1º de enero de 1969 nos muestra a la Directora de la División de Ingeniería de Software del Laboratorio de Instrumentación del MIT, Margaret Hamilton, por entonces de 32 años de edad, y la torre de papel es la impresión del código fuente del Ordenador Guía del Apolo, el software que unos meses después sería utilizado para navegar y aterrizar en la Luna y cuyo desarrollo había dirigido por encargo de la NASA.

En aquellos años no existía, sin embargo, el puesto o carrera profesional de “programador de software”, de “ingeniero de software”, ni de “informático”. De hecho, el término mismo de “ingeniería de software” fue popularizado por la propia Hamilton. El software no se había probado nunca en condiciones reales: era tan pionero como los astronautas que pisarían la Luna, y hecho por pioneros que no sólo pisaban territorio desconocido, iban creando el territorio conforme avanzaban y respondían a preguntas sobre cómo conseguir que un programa tomara decisiones difíciles.

Nacida el 17 de agosto de 1936, Margaret Heafield (“Hamilton” es su nombre de casada), su pasión por las matemáticas la llevó a obtener su licenciatura en la disciplina en 1958 antes de mudarse a Boston con el plan de estudiar matemáticas abstractas en la Universidad de Brandeis. Entretanto, en 1960 aceptó un empleo interino en el legendario Instituto de Tecnología de Massachusets, MIT, desarrollando software destinado a la predicción meteorológica para Edward Norton Lorenz, meteorólogo, matemático y pionero de la teoría del caos, conocido por haber acuñado el muy malinterpretado concepto del “efecto mariposa”.

¿Cómo se aprendía a programar si no lo enseñaban en la escuela? Haciéndolo, equivocándose y trabajando como aprendiz con quienes ya habían avanzado en la disciplina. Y la programación resultó ser un espacio ideal para llevar a la práctica el talento y conocimientos matemáticos de Hamilton, que se dedicó de lleno a la nueva disciplina. En 1961 pasó al proyecto de vigilancia de misiles o aviones enemigos que entraran en el espacio aéreo estadounidense y dos años después volvió al MIT, al Laboratorio Charles Stark Draper, donde se empezaba a crear el software para ir a la Luna. Entonces el proyecto sólo existía en el papel y no despegaría (literalmente) sino hasta 1967.

En 1965, Hamilton se hizo cargo del departamento y el proyecto. Su objetivo, algo que al principio ni siquiera se había contemplado en los presupuestos de la NASA, era el programa con el cual el ordenador a bordo de las Apolo calcularía trayectorias, posiciones, velocidades y, en última instancia, tomaría decisiones en colaboración con los astronautas.

La prueba de fuego de su trabajo, inesperadamente, vendría minutos antes del aterrizaje del módulo de descenso de la Apolo 11 en la Luna. Debido a un error, un radar empezó a mandar señales equivocadas, sobrecargando al ordenador y quitándole 15% de su tiempo, que debía centrarse en realizar sus funciones de aterrizaje. El diseño del software del equipo de Hamilton incluía programas de recuperación que le permitían desechar tareas de baja prioridad y reestablecer las más importantes. El programa reconoció y resolvió el problema, evitando el riesgo de un descenso manual.

Hamilton procedería, después de unos años más en el programa espacial, a fundar su propia empresa de software, que encabeza actualmente, desarrollando el Lenguaje Universal de Sistemas que creó para el programa Apolo, una forma de programación basada en la teoría de sistemas y en la idea de prevenir los problemas más que en resolverlos cuando se presenten.

Pese a ser la más relevante por su posición y el evidente éxito de su trabajo al conseguir un descenso lunar con seguridad, Margaret Hamilton es sólo una de las muchas científicas del programa Apolo. Si ella consiguió que el módulo Águila se posara en el Mar de la Tranquilidad, por ejemplo, fue Dorothy Lee quien garantizó que el módulo de comando de la misión regresara con seguridad a tierra. Lee fue una de las primeras especialistas en aerotermodinámica, la disciplina que estudia cómo la fricción del aire genera o disipa calor, y por tanto la responsable de los escudos de calor que resistieron el reingreso a la atmósfera terrestre a una velocidad de 11.000 metros por segundo. Después, sería la responsable del diseño de las piezas cerámicas que protegieron todas las misiones del transbordador espacial.

Está también Barbara “Bobbie” Johnson, la primera mujer graduada de ingeniería general en la Universidad de Illinois. Su primer trabajo fue como parte del equipo que hizo la propuesta para obtener el contrato para el proyecto Apolo. Después se hizo cargo del diseño y evaluación de los sistemas de monitorización del reingreso a la atmósfera de las Apolo y, en 1968, se le hizo responsable de la división de Requisitos y Evaluaciones de las Misiones Apolo, al frente de un equipo de más de 100 ingenieros. O Judith Love Cohen, la ingeniera eléctrica de Space Technology Laboratories que trabajó en el sistema alternativo de guía, el respaldo en caso de que los ordenadores principales fallaran. O Ann Dickson, la joven lectora de ciencia ficción que soñaba con ser astronauta, que trabajó en diversos equipos de control en la empresa que administró la misión y no fue admitida como candidata a astronauta por no tener 600 horas de vuelo acumuladas como piloto.

Frances "Poppy" Northcutt, matemática de apenas 25 años al momento de la llegada a la Luna, se hizo conocida por ser la única mujer en la sala de control de la misión del Apolo 11. Larue W. Burbank se ocupó del diseño de los sistemas de visualización en tiempo real que utilizaron los astronautas y Catherine T. Osgood, que analizó y preparó el reencuentro entre el módulo lunar y el módulo de comando que quedaba en órbita alrededor de la Luna... La lista es, sin duda alguna, más larga de lo que se podría imaginar.

Las computadoras

Las antecesoras de Margaret Hamilton fueron las matemáticas que mayoritariamente se ocuparon en la Segunda Guerra Mundial de cálculos balísticos y de las matemáticas de las reacciones nucleares en el Proyecto Manhattan. Seis de ellas fueron las responsables de crear los problemas para ENIAC, el primer ordenador multipropósito. Como a ellas se les llamaba “computadoras” por dedicarse al cómputo de números, el aparato fue llamado “computer” en inglés. Esas primeras programadoras profesionales fueron Kay McNulty, Betty Snyder, Marlyn Wescoff, Ruth Lichterman, Betty Jean Jennings y Fran Bilas.

febrero 11, 2016

Mujeres en la ciencia

Como parte de la celebración del Día de la Mujer en la Ciencia hoy 11 de febrero, el blog colectivo Naukas ha preguntado a científicos y divulgadores sobre sus científicas favoritas.

A lo largo de los años, he escrito para "Territorios de la cultura" de El Correo y publicado en este blog varias biografías de científicas destacadas, desde la farmacóloga y Premio Nobel Gertrude B. Elion hasta la paleontóloga autodidacta Mary Anning; desde la astrónoma y descubridora de cometas Caroline Herschel, hasta la cosmóloga Cecilia Payne-Gaposchkin, que determinó que el hidrógeno es el elemento principal del universo. Hemos contado los logros de Barbara McClintock, revolucionaria de la genética, los de la muy reconocida física Marie Curie y los de la menos mencionada figura de la Ilustración Emilie du Châtelet, de la física Lise Meitner, descubridora de la fisión nuclear, y de la malograda Rosalind Franklin, cuya muerte impidió que recibiera el Nobel como codescubridora del ADN.

Nota en portada de The Washington Post del 15 de julio de 1962, informando
de que el heroísmo de Frances Oldham Kelsey había impedido, pese a muchas
presione, que llegara al mercado la talidomida. El escepticismo gana...
Pero mi favorita, si tuviera que elegir una, sería Frances Oldham Kelsey, farmacóloga cuyo rigor y determinación impidieron que se comercializara la talidomida en los Estados Unidos, pues consideraba que no se podía autorizar el medicamento sin estudios en mujeres embarazadas. Su firmeza ante las presiones que le exigían ceder no sólo salvó a miles de sufrir los defectos congénitos causados por el uso de la talidomida durante el embarazo, sino que cambió para siempre las normas, exigencias y regulaciones sobre la autorización de medicamentos.

El hashtag, por cierto, que se está utilizando es #WomenInSTEM, mujeres en ciencia, tecnología, ingeniería y matemáticas.

enero 16, 2016

Fuegos artificiales

"Nocturno en negro y oro: cohete cayendo" de James McNeill Whistler.
(Imagen D.P. vía Wikimedia Commons)

Resulta asombroso ver una noche a miles, quizá millones de personas, observando asombradas la danza de colores, brillo y explosiones de los fuegos artificiales con los que las más distintas culturas humanas suelen celebrar hoy todo tipo de acontecimientos. Los rostros adquieren expresiones infantiles, sorprendidos por un dibujo en el cielo, por una explosión especialmente fuerte o por una lluvia de chispas de colores. Lo hemos sentido... los fuegos artificiales nos emocionan profundamente.

Sabemos que a pirotecnia nació en China entre el siglo VII y X de la Era Común gracias a la invención (probablemente por accidente) de la pólvora negra, una mezcla de carbón, azufre y nitrato de potasio y que al calentarse se quema muy rápidamente, produciendo una gran cantidad de gases. El carbón (que puede sustituirse por azúcar) es el combustible básico de la reacción, mientras que el nitrato de potasio sirve como oxidante (aporta oxígeno) que acelera la velocidad de quemado y el azufre favorece que la reacción de ambos sea estable, además de ser también combustible. Si tendemos una línea de pólvora en el suelo y la encendemos, vemos que se quema a gran velocidad. Si en lugar de ello la atrapamos en un espacio confinado, como un tubo de bambú, la súbita producción de gases provoca una explosión. En la recámara de un arma, claro, puede impulsar una bala.

En el siglo X ya se vendían fuegos artificiales de tubos de papel llenos de pólvora para celebraciones familiares. Apenas servían para producir explosiones o, con un extremo abierto, podían correr sin rumbo impulsados por los gases de la combustión. En el siglo XIII, esta forma de entretenimiento llegó hasta Italia, quizás por la ruta de la seda (hay quien le atribuye a Marco Polo el haberlos llevado a occidente) o quizas traída por la invasión mongola de Europa bajo el mando de Ogodei, el hijo de Gengis Khan.

En Italia, en especial en el renacimiento, los fuegos artificiales empezaron a parecerse a los que vemos hoy gracias a la invención del proyectil aéreo, un recipiente lleno de explosivos que se disparaba al aire con el impulso de la pólvora, como un cohete o un avión a reacción, y vuyo contenido detonaba al alcanzar cierta altura, dando un espectáculo mucho más atractivo. Modificando los compuestos explosivos, los “maestros del fuego” consiguieron efectos cada vez más variados: fuentes, ruedas, conos, velas romanas, bombas, candelas españolas, palmeras, crisantemos y muchos más.

Pero seguían trabajando con pólvora negra, primitiva y sencilla que, cuando mucho, se producía en distintos tamaños de grano para que su combustión fuera más lenta (granos grandes) o más rápida (granos finos) y cuyos colores eran el anaranjado, producto de las chispas de la pólvora negra, y el blanco de alguna raspadura de metal.

En la década de 1830, los maestros pirotécnicos empezaron a aplicar los conocimientos de la química y añadieron a sus trabajos artesanales nuevas sustancias. El clorato de potasio fue una innovación como oxidante mejor que el nitrato de potasio, que ardía más rápido y a una temperatura más alta. A esa temperatura, se podían añadir a la pólvora sales metálicas para producir chispas de distintos colores.

Cuando vemos las explosiones de fuegos artificiales estamos viendo la energía que emiten distintos metales al ser calentados por la pólvora en un fenómeno llamado “luminiscencia”. Estos metales se utilizan en forma de sales. Así como la sal de mesa es cloruro de sodio, que es un metal explosivo en su estado elemental, la pirotecnia utiliza carbonatos, cloruros, sulfatos, nitratos y otros compuestos para sus despliegues.

El color rojo se obtiene con sales de litio, mientras que si se añaden sales de estroncio tenemos un rojo más brillante. El anaranjado es resultado del añadido de sales de calcio, mientras que el amarillo se obtiene con sales de sodio, el verde con las de bario y el azul con las de cobre. Mezclando compuestos, además, se puede crear una paleta de colores mucho más amplia. Por ejemplo, al quemar al mismo tiempo sales de estroncio y de cobre obtenemos un color morado, igual que si mezcláramos pintura roja y azul.

Otros colores se obtienen mediante incandescencia, es decir, el brillo que emiten algunas sustancias al calentarse, como el color rojo del hierro a altas temperaturas. El dorado revela la presencia de hierro, mientras que al añadir copos de magnesio, titanio o aluminio se producen chispas de color blanco azulado o plateado. El magnesio y el aluminio se pueden añadir también a otros colores para hacerlos más brillantes.

Los maestros pirotécnicos pueden controlar a voluntad la altura a la que se producirán distintas explosiones, y el tiempo entre unas y otras que puede producir atractivos efectos. El misil o proyectil que lanza los fuegos al cielo (a diferencia de los que son proyectados como surtidores desde el suelo) tiene una sección de impulso y lleva, en la parte superior, una bomba con las “estrellas” o efectos que van a exhibirse en cada caso, y que suelen ser bolas comprimidas hechas de pólvora y las distintas sustancias que determinarán cómo estallará y con qué colores. Están hechos de un material explosivo más suelto y fino y cada uno de ellos puede estallar en distintos momentos, gracias a una o más mechas retardadas, calculadas para que hagan estallar los efectos a gran altura. Un proyectil puede incluso tener varios efectos distintos, empaquetados en compartimientos independientes y que se van disparando en secuencia.

El disparo de los fuegos artificiales puede hacerse a mano, pero hoy se suele utilizar un sistema de encendido eléctrico con un tablero desde el cual se van lanzando los distintos proyectiles para que los distintos efectos se sucedan con el ritmo dramático ideal según el diseñador del espectáculo. Un acontecimiento así, con cientos y miles de kilos de explosivos, apoyado en la química y en los más cuidadosos cálculos, mantiene de todas formas su esencia artística: si la estructura es correcta, si la ciencia se ha hecho bien, incluso si se acompaña con alguna música relevante, nos irá llevando de una emoción a otra aún más intensa a lo largo de su desarrollo... hasta entusiasmarnos al máximo en la traca final... Un fin de fiesta a años luz de los primeros petardos chinos hace más de mil años.

Pirotecnia en el arte

Son innumerables los cuadros que representan espectáculos pirotécnicos, el más famoso de los cuales es quizá el “Nocturno en negro y oro” del pintor estadounidense del siglo XIX James McNeill Whistler. En la música, destaca la “Música para los reales fuegos de artificio” compuesta por George Frideric Handel en 1749 para acompañar los solemnes fuegos artificiales que ordenó preparar y quemar el rey Jorge II para celebrar el final de la guerra de la sucesión austríaca.

noviembre 07, 2015

¿Por qué es la gripe un adversario tan difícil?

Cubierta de proteína del virus de la gripe HRV14.
(Imagen DP Departamento de Energía de los EE.UU., vía Wikimedia Commons)
Es nuevamente esa época del año que identificamos con el frío, las fiestas, los excesos en las comidas... y también con los moqueos, toses, fiebres y malestares de la gripe, esa enfermedad causada por virus que la ciencia biomédica sigue sin poder vencer.

El hecho de que se trate de una afección vírica es ya en sí una primera indicación de cuál es el problema que enfrenta la ciencia. Hasta hoy no tenemos ninguna forma eficaz de curar las enfermedades producidas por virus, salvo por alguna excepción como es el caso de la hepatitis C. Podemos prevenir algunas mediante vacunas, motivo por el cual ante el ébola y otras enfermedades hay más esfuerzos buscando la vacuna que la curación. Podemos controlar algunos virus, como el VIH, responsable del SIDA. Y no nos servirán de nada los antibióticos, que pueden matar bacterias que nos atacan, pero no virus.

Pero en la vasta mayoría de los casos, si nos curamos de una afección causada por un virus es la labor del sistema inmune de nuestro cuerpo. De hecho, muchos de los síntomas más molestos de las gripes o resfriados, como la fiebre y el cansancio, son resultado de la acción de los mecanismos de defensa del cuerpo.

Cuando un virus entra en el cuerpo, lo más probable es que sea destruido por el sistema inmune. Si no fuera así, sufriríamos continuamente una multitud de enfermedades virales, ya que hay virus todo a nuestro alrededor. De hecho, hay más virus que ningún otro ser vivo... si aceptamos que los virus son seres vivos. Si lo son, son bastante peculiares. No tienen funciones respiratorias, digestivas o de movimiento, son solamente una capa de proteínas que cobija a una cadena de ARN o ADN y cuya única función es, al encontrar ciertas células vivientes, fijarse en su superficie e “inyectar” en ellas su material genético, el ARN o ADN. Este material genético funciona como un pirata que secuestra a la célula obligándola a invertir sus procesos metabólicos en la producción de miles y miles de copias del virus (de nuevo, la capa de proteínas y la cadena de material genético). Cuando se han agotado las capacidades de la célula, ésta estalla liberando a esos miles de virus, cada uno de los cuales está listo para encontrarse con otra célula y repetir el proceso.

No es difícil ver cómo, con unos cuantos ciclos de infección y liberación de copias del virus, el cuerpo puede sentir los efectos de la muerte de las células. Si las células son, como en el caso de la gripe, las de nuestro tracto respiratorio, tenemos todos los efectos comunes: moqueo, garganta irritada, tos. Lo que está ocurriendo en nuestro interior es una verdadera batalla colosal entre los virus y nuestro sistema inmune. Generalmente gana éste pero, en algunos casos, una gripe puede provocar la muerte.

Esta respuesta inmune permite que nuestro cuerpo adquiera inmunidad a esa cepa de ese virus. Las células encargadas de aniquilar a los intrusos en nuestro cuerpo “aprenden” cómo es ese virus y cómo destruirlo, lo que nos hace esencialmente resistentes a él en lo sucesivo. Este mecanismo es precisamente el que se aprovecha para generar vacunas, inoculando virus muertos o atenuados, o proteínas concretas, pero evocar esa inmunidad adquirida sin que tengamos que sufrir las enfermedades.

Gripe y resfriado, dos virus, dos enfermedades

¿Por qué hablamos de “gripe o resfriado”? Pues porque realmente no estamos hablando de una sola enfermedad, sino de al menos dos afecciones con síntomas parecidos, una más grave y ambas causadas por virus distintos. Y no solemos estar conscientes de ello.

El resfriado común es una molesta enfermedad que nos puede afectar en cualquier momento a lo largo del año con nariz moqueante o tapada, garganta dolorida, estornudos, fiebre no muy alta, tos, dolores de cabeza y cansancio leve, y suele desaparecer en una semana. Su causa es la gran familia de rinovirus (que significa virus de la nariz) humanos, que atacan todo el año, pero más frecuentemente al principio del otoño y al final de la primavera. Se conocen 3 especies de rinovirus y más de 99 tipos distintos dentro de ellas. Los rinovirus son responsables de aproximadamente la mitad de las enfermedades tipo gripe que se padecen en todo el mundo, y la infección con ellos es la más común de todas las enfermedades humanas. Son generalmente leves, aunque excepcionalmente pueden ser graves.

La gripe estacional, la que suele presentarse con el clima frío, es más grave, ya que además de los síntomas del resfriado la fiebre que provocan puede llegar a ser alta, y provocan escalofríos, dolores musuclares graves y fatiga intensa que puede durar hasta más de dos semanas. Los causantes son tres géneros de virus de la influenza o gripe, que pueden afectar a otras especies además de la humana. Pero los causantes de las pandemias de gripe son los virus del género A y B, que se clasifican de acuerdo con la presencia en su superficie de las proteínas hemaglutinina (H) y neuramidasa (N), con 18 subtipos de la primera y 11 subtipos de la segunda. Así, por ejemplo, los virus H1N1 fueron responsables tanto de la gripe española de 1918 y de la gripe porcina en 2009.

La prevención de la gripe se realiza por medio de vacunas que pueden proteger contra tres o cuatro de los más comunes subtipos A y B del virus. Estas vacunas ofrecen una protección que sin embargo no es tan amplia como la de otras vacunas. Además, debe renovarse anualmente, porque la de un año no nos protege contra la del siguiente. El arma del virus de la gripe para evadir nuestro sistema inmune es su capacidad de mutar, cambiar año con año las proteínas que lo recubren de modo que resulte otra vez una infección nueva para nuestras defensas naturales y para las obtenidas por medio de las vacunas.

Algunos antivirales tienen un efecto limitado sobre algunos tipos del virus de la gripe, pero en general tanto para el resfriado común como para la gripe, el único alivio son los antigripales que reducen los síntomas más molestos, el reposo y la paciencia. Salvo cuando se presentan complicaciones graves, que llevan a la muerte a más de 100.000 personas cada año.

Fríos y resfríos

Aunque tendemos a relacionar la gripe con el frío, esta correlación no es tal o, al menos, no se trata de que nuestras defensas, como se suele pensar, sean menos eficaces debido al frío. Los científicos manejan varias hipótesis: que el descenso en la humedad del ambiente favorece la transmisión del virus, el hecho de que en temporada de frío estamos más tiempo bajo techo y con otras personas, lo que favorece el contagio, y el que a bajas temperaturas el virus cree un mecanismo de protección que le permite sobrevivir más y mejorar sus probabilidades de infectar a otra persona. Abrigarnos, como recomienda mamá, no nos salvará de la gripe.

septiembre 26, 2015

El casi inexistente neutrino

Llenado de agua del gigantesco observatorio Kamiokande en 2006. Cada semiesfera
plateada es un fotomultiplicador-detector de neutrinos.
(© Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo)
Miles de millones nos atraviesan a cada segundo sin que lo notemos, sin que lo podamos notar, pues los neutrinos son la más extraña de las partículas elementales (el zoo de partículas) que componen nuestro universo. Los neutrinos son la partícula con masa más abundante del universo, sólo por debajo de los fotones, que componen la luz y que no tienen masa. Se producen en las reacciones nucleares, tanto de fusión como de fisión (la mayor fuente de neutrinos que tenemos al alcance es nuestro propio sol) y en las supernovas cuando estallan.

Los neutrinos tienen masa. Muy pequeña. Tanto que hasta 1998 se pensaba que no la tenía, que era una especie de partícula fantasma. Estas partículas no tienen carga eléctrica, viajan casi a la velocidad de la luz y son tan pequeños. Hacen falta diez millones de ellos para tener la masa de un electrón. Esas características han hecho tan difícil su estudio, ya que los neutrinos prácticamente no interactúan con el resto de la materia. Los neutrinos no son afectados así por dos de las cuatro fuerzas fundamentales del universo, la electromagnética y la fuerza nuclear fuerte. Sí les afecta la fuerza nuclear débil, pero ésa sólo tiene efectos en distancias muy cortas, y sí les afecta la gravedad mínimamente, en relación a su masa. Así que no suelen afectar a otras partículas ni, a su vez, verse afectados por ellas. Casi todos los neutrinos que llegan a la Tierra pueden atravesarla de lado a lado sin interactuar con ninguna otra partícula a su paso, como una nave viajando en el espacio no podría encontrarse al azar con casi ningún cuerpo estelar. Vale la pena recordar aquí que lo que nos parece materia sólida (y líquida) en realidad está formada principalmente por espacio vacío.

Pero, pese a ser tan pequeño y tan etéreo, el neutrino es fundamental para entender el universo a nuestro alrededor. Por poner sólo un ejemplo, si podemos determinar el origen de los neutrinos que llegan a la Tierra, quizá podríamos determinar de dónde proceden los rayos cósmicos que nos bombardean incesantemente, rayos de una enorme energía, tanta que no la hemos podido reproducir en nuestros laboratorios.

La existencia de lo que hoy llamamos neutrino fue propuesta en 1931 por el físico teórico Wolfgang Pauli, uno de los pioneros de la física cuántica y Premio Nobel en 1945. En sus cálculos, determinó que la energía no parecía conservarse en la desintegración radiactiva llamada “beta”, donde un neutrón del núcleo de un átomo radiactivo se convierte en un protón y un electrón. En el proceso radiactivo se había perdido algo de energía. Y como la energía ni se crea ni se destruye, Pauli pensó que podría haber sido tomada por una partícula neutral en aquellos años indetectable. Tres años después, otro físico, Enrico Fermi, le dio a esa partícula el nombre de “neutrino”, es decir, “el pequeño neutral”, que era fundamental para explicar la desintegración radiactiva tal como se observaba en los experimentos realizados por entonces.

Pero fue necesario esperar hasta 1956 para que Clyde Cowan y Frederick Reines consiguieran demostrar la existencia de dichas partículas utilizando un reactor nuclear como fuente de neutrinos. El descubrimiento de los llamados “neutrinos electrones” le valió a Reines el premio Nobel de física por su parte en el descubrimiento. Desafortunadamente, como ha ocurrido en otros casos, la muerte prematura de Cowan le impidió ser galardonado con el premio, ya que no se otorga post mortem.

Los neutrinos también se pueden encontrar en otras formas o “sabores”, el neutrino muón (hallado en 1961 por Leon Lederman, Melvin Schwartz y Jack Steinberger, en el CERN, hoy famoso por su acelerador de partículas, el LHC), y el neutrino tau, extremadamente escaso y de vida muy corta, que no pudo observarse sino hasta el año 2000 también en el CERN.

La característica más peculiar de los neutrinos es que, a diferencia de las demás partículas elementales, están “oscilando” continuamente, es decir, cambiando de sabor. Y, además, pueden tener una mezcla de sabores, es decir, pueden tener parte de neutrino electrón y parte de neutrino muónico.

Decíamos que casi todos los neutrinos que llegan a nuestro planeta lo atraviesan sin interactuar con ninguna partícula. Para percibir a algunos de los pocos que sí interactúan, sin embargo, necesitamos sistemas enormes que estén aislados de otras formas de radiación. Para ello, los observatorios de neutrinos se ubican a gran profundidad en la tierra, donde no pueden llegar los rayos cósmicos y otras partículas.

Uno de los observatorios de neutrinos más impresionantes que existen es el Super Kamiokande, aunque no se parece a nada de lo que solemos llamar observatorio. Se trata de un tanque cilíndrico de acero inoxidable de 40 por 41 metros situado a mil metros de profundidad, en la antigua mina de Mozumi, que contiene 50.000 toneladas de agua ultrapura. El tanque está rodeado por más de 11.000 tubos capaces de multiplicar cualquier pequeñísimo destello de luz decenas de millones de veces. El funcionamiento del observatorio es el siguiente: cuando ocurren eventos como la desintegración de un protón o que una partícula colisione con un electrón o el núcleo de un átomo del agua, éstos provocan un cono de luz. El fenómeno, llamado “radiación de Cherenkov”, es percibido como un tenue anillo de luz por los tubos detectores. los datos de los distintos tubos que registran la luz permiten saber qué partícula los ha provocado. Estos detectores, por ejemplo, consiguieron registrar, en 1987, 11 neutrinos provenientes de la explosión de una supernova.

¿Qué relación tienen los neutrinos con las partículas a las que están asociados (electrón, muón, tau)? ¿Por qué y cómo oscilan o cambian de uno a otro mientras recorren el universo a velocidades tan enormes? ¿Tienen que ver los neutrinos, como algunos físicos sospechan, con la materia oscura y la energía oscura que forman el 95% de nuestro universo y que aún no hemos podido detectar? Éstas son algunas de las preguntas que animan la investigación de los neutrinos. Enormes, costosos, delicadísimos aparatos a cargo de mujeres y hombres altamente preparados que investigan unas partículas casi inexistentes.

En la cultura popular

En 1959, el poeta estadounidense John Updike escribió un poema sobre los neutrinos que ya decía que para ellos “la tierra sólo es una bola sin sentido”. En 1976, la banda canadiense de rock progresivo Klaatu grabó la canción El pequeño neutrino, de Dee Long, que desafiantemente dice “Yo mismo me niego a ser / soy alguien a quien nunca conocerás / Soy el pequeño neutrino / Y ahora estoy atravesando / Al que se conoce como tú / Y sin embargo nunca sabrás que lo hago”. Visto así, no deja de ser levemente inquietante.

septiembre 12, 2015

De la inmunidad al SIDA a la curación

Virus del VIH saliendo de una célula humana
donde se ha reproducido. (Imagen D.P. National
Institutes of Health, EE.UU. vía Wikimedia
Commons)
El 1% de los seres humanos puede exponerse a la infección de VIH sin ser infectado. El retrovirus entra efectivamente en su cuerpo, pero no puede actuar, no puede reproducirse (proceso en el cual destruye los glóbulos blancos que ataca, precisamente los responsables de nuestro sistema inmune) y por lo tanto estas personas nunca desarrollan el SIDA como enfermedad. Son inmunes a la epidemia.

Fue a principios de los 1980 cuando apareció el virus de la inmunodeficiencia humana (VIH), que destruye el sistema inmune de sus víctimas, dejándolas indefensas ante las infecciones, el temido síndrome de inmunodeficiencia adquirida, SIDA. Y las víctimas de SIDA tenían una esperanza de vida reducidísima, la enfermedad parecía ser altamente contagiosa, sobre todo mediante agujas infectadas (cebándose en los drogadictos más extremos) y a través del contacto sexual. Las historias se multiplicaban en los medios, alentadas por las muertes de personajes famosos como Rock Hudson o Freddie Mercury. Por si fuera poco, la epidemia comenzó a desarrollarse entre la comunidad homosexual, lo que animó los ataques de homofóbicos.

Adquirir el VIH, un peculiar retrovirus, conducía entonces inevitablemente al SIDA y éste era mortal en poco tiempo, meses, incluso, matando a través de “infecciones oportunistas” que se aprovechan de la debilidad del sistema inmune de los pacientes.

Las costumbres cambiaron y los controles se multiplicaron: en bancos de sangre, hospitales y consultorios. El condón se generalizó como principal barrera al contagio del VIH, aparecieron guantes de goma en las manos de todos quienes pudieran tratar con sangre de otras personas. Y el debate se incendió en lugares como algunos países africanos, donde las creencias religiosas opuestas al uso del condón ayudaron a que la epidemia se difundiera. No fue sino hasta 1999 cuando aparecieron tratamientos que, sin curar el VIH, consiguen mantener al virus bajo control dando a las víctimas una esperanza de vida similar a la media.

En este panorama, el descubrimiento de que hay una proporción de seres humanos que son inmunes al VIH fue no sólo una sorpresa sino también una esperanza en su tratamiento.

El secreto de la resistencia

Un virus como los del VIH (hay dos tipos distintos), al entrar en el torrente sanguíneo, se fija a la superficie de la célula que infecta, en este caso los linfocitos T colaboradores, y puede introducir su ADN en la célula secuestrando su dotación genética para que haga copias del virus, que a su vez atacan a otras células. El VIH, en concreto, se fija en proteínas de la superficie de las células, como las llamadas CD4 y CCR5. Esta última se ha comparado con una cerradura que puede abrir el virus para entrar en la célula. Pero resulta que, en algunos casos, el gen que produce la proteína CCR5 ha experimentado una mutación, llamada CCR5-delta32 que ha borrado algunas instrucciones para formar la proteína.

La CCR5 que producen esas células mutadas no es funcional, de modo que el virus no puede instalarse en la célula ni introducir su carga genética en ella. La célula (es decir, el linfocito T que juega un papel esencial en las defensas del cuerpo) es inmune al VIH. Como tenemos dos copias de cada cromosoma y de cada gen, es necesario que el individuo tenga la mutación en ambos genes CCR5. De otro modo, la proteína sería producida correctamente por uno de los cromosomas en que está alojado el gen (el 21) y el virus podría infectar a la célula. Quienes sólo tienen la mutación en uno del par de cromosomas, son sin embargo más resistentes a las infecciones.

¿Cuándo surgió esa mutación y por qué se ha mantenido? Las hipótesis han cambiado con el tiempo. Su origen parece encontrarse entre los vikingos, pues al hacer estudios sobre la proporción de personas con la mutación, los países nórdicos tienen los mayores números, lo que sugiere que apareció allí y se fue extendiendo como una onda lentamente hacia las poblaciones que iban teniendo contacto con ellos.

Originalmente, se pensó que la mutación había sido favorecida como protección contra la peste negra que asoló Europa en la Edad Media, pero hoy los científicos hallan más viable es que haya sido una mutación que protegía contra la viruela. Es decir, una mutación que resultó beneficiosa por un motivo en el pasado lo es hoy nuevamente por otro motivo.

El descubrimiento de esta forma de inmunidad abrió por primera vez la puerta a una posible curación del SIDA, que se intentó con el llamado “Paciente de Berlín”, Timothy Ray Brown, diagnosticado con VIH en 1995 y que había estado tomando la terapia antirretroviral hasta que en 2006 desarrolló un tipo de leucemia. Se le sometió entonces a un procedimiento experimental, transplantándole células madre hematopoyéticas, es decir, que dan origen a todos los tipos de células sanguíneas que tenemos, en la médula ósea. Esas células madre produjeron, entre otras, linfocitos T colaboradores con CCR5 mutada no funcional en su superficie, atacando los dos problemas de salud graves de Brown: la leucemia y el VIH.

Cien días después del primer trasplante, el VIH había prácticamente desaparecido de su cuerpo, y así se ha mantenido hasta la fecha, considerándolo el primer ser humano curado de HIV.

¿Por qué no se usan estos trasplantes para todos los pacientes de VIH? Primero, porque aún no hay certezas, siempre es posible que el paciente recaiga. Y el trasplante es en sí un procedimiento peligroso que puede tener complicaciones a corto y largo plazo, tales como infecciones, rechazo, procesos inflamatorios e incluso provocar otro cáncer.

La curación del “paciente de Berlín” sigue siendo un experimento, pero tanto Brown como muchos científicos han emprendido acciones para buscar la curación definitiva del SIDA (que sería además un gran paso adelante en el combate de las enfermedades virales) a partir de esa mutación, ese cambio al azar que para muchos ha sido la diferencia entre la vida y la muerte.

La evolución en acción

La mutación CCR-delta32 es un excelente ejemplo de la selección natural en acción dentro de nuestra propia especie, en el incesante –pero extremadamente lento- proceso evolutivo. En el pasado, la ventaja de inmunidad a alguna enfermedad claramente favoreció a quienes ya tenían la mutación de modo que pudieron reproducirse un poco más que quienes no la tenían, difundiéndola y ampliando su presencia en nuestra especie. Si no tuviéramos las herramientas de la ciencia y la medicina preventiva, no es difícil pensar que el SIDA podría diezmar a la población mundial como lo ha hecho en algunas zonas de África, donde resultarían mucho más favorecidos los que poseen la mutación, de modo que en un futuro la mayoría de los seres humanos serían descendientes de estos inmunes y tendrían por tanto la mutación.

agosto 29, 2015

Usted no tiene cinco sentidos

"Alegoría de los cinco sentidos", de Jan Lievens (1607-1674), pintor holandés.
(Imagen D.P. vía Wikimedia Commons)
Pocas observaciones sobre nosotros mismos está tan arraigada como la de que tenemos cinco sentidos que conectan nuestro mundo subjetivo, nuestra cognición, nuestra memoria y nuestra personalidad con el mundo exterior. Esta idea procede del libro De anima (Del alma) de Aristóteles, en donde especulaba sobre el origen del alma, las sensaciones, las emociones y los sentidos, que idzezntifica como el tactoz, la vista, el oído, el olfato y el gusto, y dedicaba uno de los capítulos a argumentar por qué no podía haber más que cinco sentidos.

Aristóteles se equivocaba, nada extraño cuando sus especulaciones carecían del método autocorregible de la ciencia. La realidad resulta mucho más complicada.

Fue apenas en el siglo XIX cuando se empezó a estudiar el sentido del equilibrio, es decir, el que nos permite darnos cuenta de nuestra posición respecto de la atracción gravitacional del planeta o respecto de cualquier aceleración (como ocurre cuando un tren en el que viajamos toma una curva). Basta este sentido del equilibrio, del que son responsables los llamados “canales semicirculares” de nuestro oído interno, para ambas tareas. Así que al arsenal comentado por el griego se suma un “sexto sentido”. No uno sobrenatural, místico o paranormal como han pretendido algunos, sino uno perfectamente natural y sin el cual no podríamos siquiera ponernos de pie para caminar. Su nombre: “equilibriocepción”.

Pero hay más.

Para conocer al séptimo (en un orden totalmente arbitrario, por supuesto) mantenga cerrados los ojos y deje caer los brazos a sus costados para después levantar las manos y unirlas ante usted. Siga con los ojos cerrados y ahora una las manos a sus espaldas.

Asombrosamente, usted sabe en todo momento dónde están sus manos y puede controlarlas para unirlas sin verlas. Una red de receptores nerviosos por todo nuestro cuerpo nos informa constantemente dónde está cada parte de él en las tres coordenadas espaciales, sin tener que ver, como los giroscopios de un avión o una nave espacial. Usted puede, con los ojos cerrados, tocarse una oreja, la rodilla o incluso encontrar con un dedo otro de la otra mano. El sentido se llama “propiocepción” y el bueno de Aristóteles no alcanzó a imaginarlo pese a que lo utilizó obviamente con éxito toda su vida.

El truco, si lo pensamos un poco, es asombroso, casi mágico: saber dónde estamos no sólo sin ver, sino empleando sensores remotos. Esos sensores están acompañados de otros, los “tensoceptores” que nos dicen cuando un músculo está en tensión, incluso si no cambia de posición. De nuevo, cierre los ojos y tense un músculo, como el bíceps, y percibirá el hecho con ese sentido adicional.

Sigamos añadiendo sentidos.

Cuando el que fuera tutor de Alejandro Magno habló del “tacto”, en realidad estaba haciendo una tremenda sobresimplificación respecto a las capacidades sensoriales de nuestra piel, que en realidad es capaz de hacer varias formas diferenciadas de percepción con distintos receptores nerviosos. Podemos conocer, a través de ella, la textura de una superficie u objeto: rugosa, lisa, suave, áspera… pero también percibimos la presión que distintos objetos ejercen sobre nosotros, también nuestra piel nos informa de la temperatura de todo con lo que entra en contacto, el sentido llamado “termocepción”.

De manera especialmente importante tenemos el sentido de la “nocicepción”, la percepción del dolor, el sistema de alarma de nuestro cuerpo del que puede depender nuestra vida, y uno al que solemos darle menos relevancia, la “pruricepción” o percepción del prurito, y que en palabras sencillas significa la percepción de la comezón.

Así, rápidamente hemos desdoblado el tacto en cinco sentidos claramente diferenciados, uno de los cuales además está presente en prácticamente todo nuestro cuerpo: la percepción del dolor. Distintos tipos de dolor en distintos lugares del cuerpo nos envían señales que sabemos diferenciar para obtener información importante sobre lo que está pasando con nosotros.

Por supuesto, el número de sentidos que contemos en nuestro complejo sistema nervioso depende de cómo definamos “sentido”, lo que es bastante más complejo de lo que parece a primera vista: ¿llamamos sentido a la percepción que hace un órgano o a lo que registran distintos tipos de receptores nerviosos? En este último caso, por ejemplo, el gusto se dividiría en varios sentidos más: la percepción de lo dulce, lo salado, lo amargo, lo ácido y lo umami o “sabroso”, identificado apenas en las últimas décadas. Pero si hacemos eso, nuestro olfato sería literalmente cientos, acaso miles de sentidos, pues cada aroma distinto activa diferentes receptores.

Por otro lado, aún sin sensores u órganos específicos, tenemos otros sentidos que sin duda son importantísimos para la vida: el de la sed, el del hambre, el de la necesidad de orinar o de defecar, el de los ojos irritados cuando tenemos que dormir, el del sueño mismo…

Es claro que lo que al estagirita (como se conocía a Aristóteles por su ciudad de nacimiento) le parecía asunto simple, sencillo y concluido en unas cuantas páginas resulta un universo de vasta complejidad donde los neurocientíficos apenas están incursionando para saber no sólo qué es lo que percibe nuestro encéfalo, las rutas mediante las cuales adquiere información del mundo exterior e incluso de sí mismo, sino cómo es que se activa cada receptor, qué vías siguen las fibras nerviosas que conducen sus impulsos y qué partes de nuestro encéfalo son las encargadas de tomar esas reacciones y cómo las convierten en eso que sentimos en nuestro mundo subjetivo. Incluso podría ser que, como las aves, tuviéramos la capacidad de detectar el campo magnético terrestre o, como otros animales, percibir así fuera de modo no consciente las feromonas u hormonas olfativas que transmiten información sexual.

El error de Aristóteles, repetido por sus seguidores durante cientos y cientos de años, y su certeza inamovible se han convertido, algo siempre bueno en ciencia, en una vasta matriz de interrogantes e incertidumbres apasionantes.

Otros mitos del sistema nervioso

Es todavía común creer que utilizamos únicamente el 10% de nuestro cerebro, tanto así que una reciente producción de Hollywood se basa en esa idea. Sin embargo, en realidad usamos –y necesitamos- el 100% de todo nuestro encéfalo, y podemos verlo todo en acción gracias a los nuevos sistemas de imágenes que nos muestran bajo qué condiciones se activan sus diversas zonas. El daño a cualquier parte de nuestro encéfalo nos afecta demostrando que todas son indispensables. También se suele pensar que nuestra memoria es un registro preciso de la realidad, como una grabación de vídeo, cuando es en realidad una reconstrucción continua, poco fiable y fácil de modificar, de los acontecimientos del pasado.

agosto 01, 2015

La agitada vida de Primo Levi

Primo Levi en 1950, cinco años después de sobrevivir su
prisión en Auschwitz. (Imagen D.P. vía Wikimedia Commons)
“No hay nada más vivificante que una hipótesis” dice Primo Levi en “Níquel”, el cuento que relata su graduación como químico de la Universidad de Turín y sus memorias de la Segunda Guerra Mundial.

En 2006, The Royal Institution de la Gran Bretaña determinó mediante votación pública que el mejor libro de ciencia jamás escrito, al menos hasta ese momento, era La tabla periódica, del químico italiano Primo Levi. Los finalistas, que habían sido seleccionados por diversas personalidades de distintas especialidades, habían sido además El anillo del rey Salomón del etólogo Premio Nobel Konrad Lorenz, Arcadia de Tom Stoppard y El gen egoísta del también etólogo británico Richard Dawkins.

La tabla periódica no es un ensayo ni una obra de divulgación al uso. Es una colección de cuentos cortos. 21 relatos que tienen cada uno a un determinado elemento químico como su pretexto y que, además de narrar las características de dicho elemento, sus compuestos, sus propiedades y peculiaridades, cuenta historias apasionantes y humanas, algunas de fantasía heroica, otras de cotidianidad, amor, amistad, familia, método experimental... un libro que cuarenta años después de su publicación (1975) sigue siendo una joya de la literatura y de la aproximación a la ciencia.

Probablemente en otro tiempo, en otro lugar, Primo Michele Levi habría sido solamente un químico industrial apasionado con su disciplina, se habría limitado a trabajar en una empresa y se habría jubilado satisfecho de una labor bien realizada durante tres o cuatro décadas. Ciertamente, no habría tenido las experiencias que lo llevaron a escribir La tabla periódica.

Pero las circunstancias de su vida lo llevaron a ser, además de químico industrial, partisano, poeta... y uno de los más conocidos supervivientes del campo de exterminio de Auschwitz... sin todo lo cual su libro sobre los elementos químicos no habría sido escrito nunca.

Primo Levi nació en Turín, Italia el 31 de julio de 1919, el primogénito de una familia no creyente, liberal e ilustrada, con ancestros judíos sefarditas. Entre su nacimiento y el de su hermana, en 1925, Italia había pasado a ser gobernada por el fascismo de Benito Mussolini, que había fundado su movimiento el mismo año del nacimiento de Primo y se había erigido en dictados absoluto cuando nació su hermana Anna Maria.

En 1938, el gobierno fascista promulgó el decreto de la ley racial, que restringía los derechos civiles de los judíos y los excluía de los puestos públicos y de la educación superior. Pero como el joven Primo Levi se había matriculado en química en la Universidad de Turín en 1937, la interpretación de la ley racial determinó que no era retroactiva, y los alumnos inscritos antes de que se promulgara pudieron continuar con sus estudios... pero con el estigma de su origen familiar.

Mussolini declaró la guerra a los aliados en 1940, consolidando su alianza con Hitler, y pronto empezaron los bombardeos aliados en territorio italiano, incluida, por supuesto, la ciudad de Turín. Primo Levi, entre los destrozos de la guerra, se licenció con honores en química en 1941. Pero el título le valía de poco para ganarse la vida porque en él venía inscrita la indicación de que era judío. Fue necesario que falsificara documentos para conseguir un empleo en una mina en el norte de Italia. Volvió a Turín en 1943 a la muerte de su padre, para huir de inmediato con su madre y su hermana hacia el norte de Italia.

En 1943, la persecución contra los judíos alcanzaba su punto más alto mientras el liderazgo italiano se desmoronaba. Los aliados habían invadido Sicilia y se preveía un desembarco en la Italia continental. Los desastres militares en el Norte de África habían debilitado políticamente a Mussolini, que fue depuesto ese mismo año, después de lo cual rápidamente Italia firmó un armisticio con los aliados. La reacción del hasta poco antes aliado Hitler fue inmediata: invadir el norte de Italia.

El mismo día del armisticio, el químico huyó a Torino, y poco después se unió al movimiento de resistencia armada “Justicia y libertad”. Su aventura como guerrillero antifascista duró apenas dos meses. En diciembre fue arrestado por la milicia fascista y, siendo judío, en lugar de ser fusilado como partisano de izquierdas fue entregado a los nazis y, en febrero de 1944, deportado a Auschwitz, donde sobrevivió echando mano de sus habilidades profesionales y personales hasta que el campo fue liberado por el Ejército Rojo soviético en enero de 1945. Después de un largo periplo europeo, en octubre de ese año consiguió volver a Turín, al mismo piso en el que había nacido.

Comenzaba entonces otra odisea: conseguir empleo en un país en difícil reconstrucción. Mientras buscaba colocarse en alguna empresa como ingeniero químico, Levi empezó a contar historias de Auschwitz y en 1946, con apenas 27 años de edad, descubrió su segunda vocación, la literatura, primero en la forma de poemas relacionados con su experiencia en el más famoso campo de exterminio del delirio nazi. Para cuando se empleó como director técnico de una empresa química en Turín y se casó, descubrió que ya no podía dejar su segundo oficio y, a partir del libro Si esto es un hombre de 1947, publicaría un total de 14 libros de memorias, cuentos (incluidos dos de ciencia ficción originalmente escritos bajo seudónimo), poemas y novelas, siempre impulsado por la convicción de que tenía la obligación de dar testimonio de la bajeza humana y de la grandeza que la enfrenta. Todo, además, desde el punto de vista de un no creyente religioso, un ateo confeso. Siguió trabajando en empresas químicas, incluso llevando un tiempo la suya propia, hasta 1977, cuando se retiró, con 58 años, para dedicarse sólo a escribir.

En 1987, reconocido como autor pero rechazado por algunos de sus protagonistas como los soviéticos, que se negaban a publicarlo en ruso, Levi trabajaba en un nuevo libro de relatos que enlazaba la química con historias humanas El doble enlace, referido al enlace químico de cuatro electrones. Nunca lo terminaría. El 11 de abril de 1987, después de recibir el correo en su piso de Turín, el mismo en el que había nacido, cayó por el hueco de la escalera desde la tercera planta y murió. Oficialmente, su muerte fue un suicidio, aunque muchos a su alrededor han puesto la determinación en duda y consideran más viable que su caída fuera un accidente.

Levi en rock

En 1990, el grupo anarcopunk Chumbawamba, escribió y grabó la canción “El testamento de Rappoport - Nunca me di por vencido”, canción inspirada en el cuento “Capaneo” de Primo Levi, sobre un personaje que afirma que, pese a la humillación y al hambre, Hitler no lo había vencido. Levi está también presente en la música e imágenes de Manic Street Preachers y Peter Hamill (de Van de Graaf Generator).

julio 18, 2015

Los vencedores de la difteria

Emil von Behring, creador de la antitoxina de la difteria.
(Imagen D.P.  vía Wikimedia Commons)
La reaparición de la difteria en países donde estaba aparentemente ya erradicada ha disparado una profunda reflexión sobre los movimientos antivacunas y sus efectos en la salud individual y colectiva.

Hoy es necesario explicar qué es la difteria para poder hablar de esta enfermedad, que a fines del siglo XIX era temida pues se cobraba miles de vidas de niños todos los años, y en algunos casos provocaba epidemias como las muchas que azotaron a España, especialmente en 1613, “El año del garrotillo”.

“Garrotillo” significa “sofocación” y se daba este nombre a la difteria porque bloqueaba la respiración de sus víctimas debido a la aparición de un recubrimiento o pseudomembrana de color grisáceo en las mucosas del tracto respiratorio como resultado de la infección por parte de una bacteria, la Corynebacterium diphtheriae.

La pseudomembrana de la difteria está formada por subproductos causados por la propia bacteria por medio de una potente toxina que puede entrar al cuerpo y afectar gravemente a diversos órganos, incluidos los músculos, , el hígado, los riñones y el corazón.

Hipócrates describió la enfermedad por primera vez, hasta donde sabemos, en el siglo V aEC. Desde entonces, se intentó sin éxito combatir la enfermedad. Sus pacientes, sobre todo niños, recorrían el curso de la enfermedad y aproximadamente un 20% de los menores de 5 años y el 10% de los demás, niños y adultos, morían, mientras que otros quedaban afectados de por vida ante la impotencia de todos a su alrededor.

El primer paso para vencer a la difteria, que recibió su nombre definitivo apenas en 1826 a manos de Pierre Bretonneau, lo dio el suizo alemán Edwin Klebs en 1883, quien identificó a la bacteria causante de la enfermedad. Sólo un año después, el alemán Friedrich Loeffler aplicó los postulados que había desarrollado con Robert Koch para demostrar que efectivamente esa bacteria era la causante de la difteria.

Mientras se hacían estos estudios, otros médicos buscaban aliviar los síntomas que provocaban la muerte de sus pacientes, principalmente la asfixia provocada por el bloqueo de las vías respiratorias debido a la pseudomembrana. Para combatirla, se hizo primero común la práctica de la traqueotomía (cortar la tráquea para que el aire pase directamente hacia ella y a los pulmones) y en 1885 se empezó a difundir la técnica de la intubación para mantener abiertas las vías respiratorias. Su creador, el estadonidense Joseph P. O’Dwyer moriría, por cierto, de lesiones cardiacas provocadas por la difteria de la que se contagió en el tratamiento de sus jóvenes pacientes.

Los franceses Émile Roux, que durante mucho tiempo había sido la mano derecha de Louis Pasteur, y Alexandre Yersin trabajaron sobre esta base y demostraron que la bacteria no entraba al torrente sanguíneo, pero sí lo hacía la toxina que producía y que, aún sin la presencia de la bacteria, la sustancia bastaba para causar difteria en animales experimentales. Esto abrió el camino para que el japonés Shibasaburo Kitasato y el alemán Emil von Behring diseñaran un sistema para tratar la toxina de modo tal que provocara la inmunidad en animales. El suero sanguíneo de esos animales, que contenía la antitoxina de la difteria, podía entonces utilizarse para curar esa enfermedad en otro animal. Émile Roux, que confirmó los experimentos de los anteriores, fue el primero que aplicó la antitoxina a grandes cantidades de pacientes, tratando a 300 niños franceses en 1894.

La difteria era curable. O al menos controlable. La antitoxina no revierte los daños ya causados, pero sí impide que la toxina siga haciendo estragos, de modo que un tratamiento temprano era mucho mejor que uno tardío. El procedimiento de creación de antitoxinas se utilizaría pronto para tratar otras enfermedades mortales provocadas por bacterias, como la fiebre tifoidea, el cólera y la septicemia.

Liberar a la humanidad del dolor y desesperación causados por la difteria dio a sus vencedores el primer Premio Nobel de Medicina o Fisiología, otorgado en 1901, en la persona de Emil Adolf Von Behring aunque, para muchos, debió haberlo recibido de modo compartido al menos con Yersin y Roux.

Una vacuna que impidiera que se contrajera la enfermedad era el siguiente paso. Pero las vacunas para las afecciones provocadas por bacterias no son iguales que las que se utilizan para las enfermedades virales, donde una proteína del virus, una parte de mismo o todo el virus debilitado o muerto se inoculan para que el sistema inmune “aprenda” a producir defensas que utilizaría en caso de verse sometido a una infección. En el caso de las bacterias, las vacunas se hacen con frecuencia utilizando “toxoides”, que son formas o versiones modificadas de la toxina causante del trastorno.

La vacuna contra la difteria sólo se pudo hacer realidad tiempo después, gracias a que el británico Alexander Thomas Glenny descubrió que podía aumentar la eficacia del toxoide diftérico tratándolo con sales metálicas que aumentaban tanto su efectividad como la duración de la inmunidad que podía impartir. Estas sales se llaman coadyuvantes, y por desgracia hoy son satanizadas por la ignorancia de quienes se oponen a las vacunas afirmando, sin prueba alguna, que causan efectos graves, suficientes como para preferir el riesgo de que un niño muera de alguna enfermedad prevenible.

Desde la introducción de la vacuna contra la difteria, los casos cayeron dramáticamente. Así, entre 2004 y 2008 no hubo casos de difteria en Estados Unidos, y los niños españoles estuvieron libres de ella durante casi 30 años, hasta que en 2015 se produjo un caso desgraciadamente mortal.

La vacuna contra la difteria, se suele aplicar en una vacuna triple con el toxoide tetánico y la vacuna contra la tosferina, dos afecciones tan aterradoras como la difteria. La vacuna se conoce como Tdap o Dtap y se aplica en 4 o 5 dosis a los 2, 4, 6 y 15 meses de edad para garantizar una protección fiable.

Postulados de Koch

Un paso fundamental en el desarrollo de la teoría de los gérmenes patógenos que dio origen a la medicina científica fueron los cuatro pasos identificados por Robert Koch y Friedrich Loeffler para identificar al microbio responsable de una afección:

  1. El microorganismo debe estar presente en todos los casos de la enfermedad.
  2. El microorganismo se puede aislar del anfitrión enfermo y cultivarse de modo puro.
  3. El microorganismo del cultivo puro debe causar la enfermedad al inocularlo en un animal de laboratorio sano y susceptible.
  4. El microorganismo se se debe poder aislar en el nuevo anfitrión infectado y se debe demostrar que es el mismo que el que se inoculó originalmente.

El paso 3 tiene como excepción la de los individuos que pueden estar infectados con un patógeno pero no enfermar, los llamados portadores asintomáticos.

julio 11, 2015

Siempre a tu alcance: el móvil o celular

2007Computex e21Forum-MartinCooper.jpg
Martin Cooper posando en 2007 con su creación, el prototipo del primer teléfono móvil o celular.
(Fotografía CC de Rico Shen, vía Wikimedia Commons)
El 3 de abril de 1973, Martin Cooper, tomó un estorboso teléfono en la 6ª Avenida de Manhattan, en Nueva York y llamó a Joel Engel, informándole que la carrera por crear el primer teléfono móvil había terminado y que Engel la había perdido. Martin Cooper era científico de Motorola y Joel Engel era su rival en Bell Labs, ambos buscando inventar un teléfono móvil viable.

Menos de cien años antes, el 10 de marzo de 1876, en Boston, Massachusets, Alexander Graham Bell había logrado llamar a su asistente Thomas Watson para pedirle que fuera a donde estaba Bell, en otra habitación de la misma casa. Bell también tenía un rival, Elisha Gray, aunque el resultado de su carrera fue menos claro que en el caso de Cooper y Engel, tanto que aún hoy se debate quién debería ser considerado el verdadero inventor del teléfono. En aquella ocasión pasó apenas un año antes de que se instalara el primer servicio telefónico comercial.

El telégrafo fue el primer intento por utilizar la electricidad para la comunicación con un sencillo principio: se provocaba una variación de corriente en un cable cerrando un circuito y se podía registrar en el otro extremo del mismo. El teléfono usaba la misma base pero más compleja. Si se podía lograr que un sonido hiciera variar una corriente eléctrica, esas variaciones podrían ser registradas al otro lado de un cable y descodificadas reconstruyendo el sonido.

El receptor era un micrófono, y el de Bell fue rápidamente mejorado y desarrollado por otros inventores, incluido Thomas Alva Edison. Su principio sigue usándose hoy en todo tipo de micrófonos: hay dos placas metálicas delgadas, separadas entre sí por gránulos de carbón y a través de las cuales se aplica una corriente eléctrica. Cuando una placa, que actúa como un diafragma, es movida por un sonido, lo convierte en presión variable sobre los fragmentos de carbón, haciendo variar la resistencia eléctrica entre las placas. La corriente registra esa variación y la transmite al otro extremo de un cable, a un altavoz que realiza el mismo procedimiento a la inversa: la variación de corriente se utiliza para mover un diafragma que al vibrar reproduce los sonidos originales.

Sobre ese principio se construyó toda la industria de la telefonía, comenzando en los Estados Unidos y la Gran Bretaña. El sistema exigía que un teléfono instalado en cualquier lugar estuviera conectado a una central telefónica mediante cables. La central era la responsable de conectar físicamente al teléfono que llamaba con aquél con el cual deseaba hablar. Al principio, esto se realizaba mediante tableros de conexiones operados por empleados, generalmente mujeres, que respondían al teléfono que hacía la llamada, el interlocutor les daba el número con el cual deseaba comunicarse. Tomaban una clavija conectada al número que llamaba Y la enchufaban en la toma correspondiente al teléfono al que se deseaba llamar. Como paréntesis, el trabajo de operadora telefónica fue uno de los espacios del nacimiento del movimiento feminista laboral, mediante la organización de los primeros grandes sindicatos de operadoras a mediados del siglo veinte.

El trabajo de las operadoras pronto fue reemplazado, en gran medida, por sistemas automatizados que reconocían el número marcado Y, por medio de relés, conectaban los dos números. Sin embargo, todo el camino de un teléfono a otro, fuera en el mismo edificio o al otro lado del mundo, estaba formado por cables conductores físicos y apenas a principios del siglo XX empezaron los intentos por transmitir la telefonía a través de ondas de radio. Con ellas, en 1915 comenzaron las llamadas intercontinentales.

Pero hacer estas llamadas razonablemente accesibles exigió tender cables sobre el lecho marino para interconectar los sistemas telefónicos a ambos lados del mismo. El primer cable entró en operación en 1921, cubriendo la corta distancia (130 kilómetros) entre Cayo Hueso, Florida, y Cuba. Pero el cable que uniera a Europa con América no sería una realidad sino hasta 1956. El siguiente gran salto sería en 1962, cuando el satélite de comunicaciones Telstar I empezó a dar servicio telefónico mediante microondas que enlazaban estaciones terrestres de modo fiable. El satélite, por cierto, fue construido y desarrollado por Bell Labs.

Pero incluso antes de ese primer cable y antes de ese satélite, los Bell Labs habían desarrollado en 1947 una idea novedosa. Los enlaces de radio tenían un problema grave: la enorme potencia de transmisión que requerían los dispositivos, y que aumentaba conforme aumentaba la distancia entre ellos. Un teléfono móvil por radio, como los que empezaron a comercializarse en 1946, necesitaba una enorme fuente de potencia. La nueva propuesta era construir una serie de estaciones base, cada una de las cuales estaría en el centro de una celdilla hexagonal como la de un panal de abejas. Así, cada una necesitaría sólo la potencia necesaria para comunicarse con las seis que la rodean, mientras que los teléfonos en sí sólo tendrían que comunicarse con la estación base (o antena de telefonía móvil) más cercana. Conforme el móvil se aleja de una antena y entra en el radio de acción de otra, pasa a transmitirle a ésta segunda sin que el usuario note el salto.

Con muy poca potencia, entonces, Martin Cooper y Motorola crearon la primera red de telefonía celular experimental con la que hizo su histórica llamada. Diez años después comenzarían a venderse teléfonos grandes, estorbosos, pesados, carísimos y con batería para sólo unas horas... pero que tenían la enorme ventaja de ser precisamente, móviles. A partir de entonces, ya no llamaríamos a un lugar donde se encontrara conectado un aparato telefónico, sino que empezaríamos a llamar a personas donde quiera que se encontraran.

Lo siguiente fue, simplemente, la miniaturización, la mayor eficiencia en las baterías y el uso de sistemas electrónicos para convertir a nuestros móviles en auténticas navajas suizas informáticas y de comunicaciones... pero que siguen siendo sobre todo la herramienta para hacer lo que hizo Bell: llamar a otra persona.

Las ondas de la telefonía móvil

Durante mucho tiempo ha sobrevivido el mito de que las ondas de radio con las que se comunican los teléfonos móviles podrían tener efectos negativos sobre la salud. La realidad es que hasta hoy no se ha demostrado ninguno de esos efectos. Más aún, es poco plausible que esas ondas pudieran hacernos daño ya que son mucho menos potentes (de menor frecuencia y ancho de banda) que las de la luz visible. Si fueran dañinas, pues, la luz lo sería mucho más. En realidad, las radiaciones electromagnéticas peligrosas son las que están por encima de la luz visible, las que comienzan en el rango ultravioleta, el UV del que sabiamente nos protegemos con pantalla solar.